
Chinese Standard Mahjong AI Based on the Searching Algorithms with
Traditional Evaluation Functions

Yian Wang1 , Kunhang Lyu1 and Zhehuan Chen1

1Peking University
{1900012980, kylelv,1900013017}@pku.edu.cn

Abstract
The game of Mahjong has a long history of more
than 2,000 years, and many researches have been
done on this charming and challenging game to ex-
plore its origin. During this competition, we create
a Mahjong bot based on searching algorithm with
traditional evaluation functions. On this founda-
tion, we implement some optimizations to improve
the accuracy and efficiency. This paper introduces
the details of our work.

1 Introduction
As a popular competitive Chinese entertainment in the world,
Mahjong has a history of more than 2,000 years [1]. A
number of theories have been presented to explore its ori-
gin of probability and game theory. It’s because of its in-
terest and challenge on thinking that educators usually apply
it to courses as an excellent example. Our research, which is
the improvement of our course project, was done on “Chi-
nese Standard Mahjong” – one of the commonest rules of
Mahjong.

2 Glossary List
To begin with, the glossary list is shown to give a clear ac-
count of some concepts mentioned in the following descrip-
tions of our research.
Tiles: the basic units of Mahjong with specific contents
on them. They are Character suit(1w-9w), Bamboo suit(1s-
9s), Dot suit(1p-9p), Wind tiles: East(1z), South(2z),
West(3z), North(4z) and Cardinal tiles: Red Dragon(5z),
Green Dragon(6z), White Dragon(7z). A tile is presented as
lower-case letters (such as x and y).
Patterns: a set of tiles each player holds. A Pattern is pre-
sented as capital letters (such as S and T).
Chow: an operation of claiming a discarded tile from the
player on the left hand to form a sequence, presented as
chow(x).
Pong: an operation of claiming a discarded tile from the
other players to form a triplet, presented as pong(x).
Kong: an operation of claiming a discarded tile from the
other players to form a kong, presented as kong(x).

Hu: victory in one game of Mahjong. The winner is the first
to hold tiles consisting of four groups of triplets, sequences or
kongs and a pair of tiles meanwhile whose total score of his
pattern is not less than 8. There are many specific winning
patterns.

Claiming tiles: operations of Chow, Pong and Kong. A
claiming operation is presented as op(x).

Winning hand: the winning pattern.

Winning structure: ST (S), details of a winning hand S,
including tags of each group in the winning hand presenting
whether the group is formed by drawing or claiming.

Points: total scores of a winning pattern.

Fan: specific winning patterns with corresponding scores.
Points will be added if a winning hand matches a “Fan”. A
winning hand can match several kinds of “Fan”.

Least number of tiles to a winning hand: LWT (S, T)
presents the least number of tiles needed to be changed to
achieve a winning hand y from the current pattern x.

Least number of tiles to Hu: LHT (S) =
min{LHT (S, T)}. It describes the distance between
the current state and the winning state – the less, the easier to
get victory.

Winning plans: a set of winning hands P (S). P (S) =
{S|LWT (S, T) = LHT (S)}.
A useful tile: a tile u considered useful if LHT (S + u) <
LHT (S).

Addition/subtraction between a pattern and a tile: S±x.
Assuming that S = {x1, · · · , xn} is a pattern and x is a tile,
we have S + x = S ∪ {x}, S − x = S − {x}.
Addition between a pattern and a claiming operation:
S + op(x). Assuming that S = {x1, . . . , xn} is a pattern
and op(x) is a claiming operation, we have S + op(x) = S′

and S′ satisfying S′ = S ∪ {x} and the corresponding group
in ST (S′) is relabeled.

3 Basic Work
3.1 Evaluation Function
The game of Mahjong is essentially a dynamic game of in-
complete information with a large number of states. To solve

this kind of problem, searching is one of the commonest
methods. However, as the numerous states can never be com-
pletely accessed in quite limited times, an effective evaluation
function is required to be carefully designed. That’s E(S) we
use in our program. It’s calculated using P (S) and LHT (S),
and with the assistance of the evaluation function, many de-
cisions are easy to make. For instance:

1. Assessing the weight coefficients of expectations of the
current patterns winning the game. For the current pat-
tern S, calculate the probability of achieving each pat-
tern in P (S).
Firstly, to simplify the model, we assume that all tiles
will be drawn at a same possibility of p, and claimed at a
possibility of 3p (when Ponging and Konging because of
discarding of the other three players) or p (when Chow-
ing from the player on left hand).
Secondly, we count the remaining (not explicitly dis-
carded) number of each useful tile x as r(x) then multi-
ply it to the result.
Thirdly, consider that we can claim tiles only when we
have already held two tiles in a group, therefore pos-
sibility of claiming a useful tile is actually lower than
we calculate above. We define some suitable parameters
presenting the possibility of forming a group by Pong-
ing or Chowing when lacking 2 or 3 tiles (respectively
as pp2, pp3, pc2, pc3, and satisfying pp2 < (3p)2, pp3 <
(3p)3, pc2 < p2, pc3 < p3).
Fourthly, we give another reduction to the possibility
weight of Konging by reducing every tile’s weight to
one-third of the original as it contributes little to the re-
sult.
In addition, we take the special Fan ”seven pairs” into
consideration. Complexity of combinations influences
that the average possibility of reaching a winning hand
decreases, so we redefine the possibility of drawing a
tile as p7(p7 < p). Last, make a product of the possibil-
ity of all useful tiles for every winning pattern and sum
them over. The output E(S) is used as the expectation’s
weight coefficient of the current pattern.

2. Assessing the importance of each tile when needed to
discard a tile. For every tile x enumerated in hand, calcu-
late E(S−x). The larger E(S−x) is, the less important
x for the current state is. Obviously, we choose x satis-
fying E(S− x) = minx∈S{E(S− x)}as the discard in
this turn.

3. Assessing the operations of Chow, Pong, Kong at the
moment. For the claiming operation op(x), calculate
E(S+op(x)) and judge whether E(S+op(x)) is greater
than E(S) or not. If so, accept the claim, ignore other-
wise.

Actually, this method of assessment is reasonably in accord
with intuition. Once we implement a claim operation, the
number of winning plans probably decreases. For example,
assume that we hold a short pattern ”2s 2s 3s” then comes
the tile ”2s”. If we choose to implement a Pong operation,
we will lose the probability of forming the ”1s 2s 3s” or ”2s
3s 4s” group. The possible drawing of ”1s” in the following

turns can be quite embarrassing. It reflects in our evaluation
function that E(S) is positively correlated to |P (S)| while
negatively correlated to LHT (S). Although claiming opera-
tions will reduce LHT (S), |P (S)| can decrease as well. As
a result, if the effect of the latter is great enough, the claiming
operation will bring negative returns. This analysis is usually
ignored by Mahjong beginners.

3.2 LHT and Winning Plans
The major work of the program is to generate all winning
plans P (S) for the pattern S we hold every moment. It
takes our program majority of executing times. The search-
ing begins with the groups formed by claiming operations
in the current pattern as the initial state. Then we apply
functions Search dfs triplet(dep, lim, I, J) to search the
triplets then Search dfs sequence(dep, lim, I, J) to search
the sequence in order to produce a winning pattern. The
greedy idea of this searching’s order assists improving ef-
ficiency and accuracy. Once reaching a possible winning
pattern, we use the function judgeHU() to judge whether
the points of this pattern is not less than 8. If so, we suc-
cessfully get a winning hand T. Then LWT (S, T) is easy
to calculate (actually calculated dynamically in the searching
processes), and LHT (S) and P (S) are updated. The total
number of state has a theoretical upper bound of 4 ∗ 525 ≈
1.5 × 109, which is quite unacceptable because the function
judgeHU() runs as slowly as crawling. We hope to control
the state’s number under a level of 105, which is what we
mainly do in our program introduced in the following.

Pseudo codes of the mentioned functions are shown:

vo id s e a r c h b e s t (i n t d i s t){
f o r (i , j) i n p a i r a v a i l a b l e s e t

i f ! i s o k p a i r (i , j) t h e n
c o n t i n u e

end i f
TMP. add (p a i r (i , j)) ;
d i s t <− d i s t + g e t d i f f ()
i f (judgeHU14 ()) t h e n

p l a n . add (TMP) ;
u p d a t e (l e a s t H u C a r d) ;

end i f
r e c o v e r (TMP) ;

end f o r
}
vo id s e a r c h d f s s h u n (i n t dep , i n t l i m i t ,\
i n t I , i n t J){

i f dep ==0 t h e n
s e a r c h b e s t (d i f f C a r d l i m i t − l i m i t) ;
r e t u r n ;

end i f
f o r (i , j) i n s h u n a v a i l a b l e s e t

i f ! i s o k s h u n (i , j) t h e n
c o n t i n u e

end i f
TMP <− TMP+shun (i , j) ;
d i f f <− g e t d i f f () ;
s e a r c h d f s s h u n (dep −1 ,\

l i m i t − d i f f , i , j) ;
r e c o v e r (TMP)

end f o r
}
vo id s e a r c h d f s k e (i n t dep , i n t l i m i t , \
i n t I , i n t J){

i f dep ==0 t h e n
s e a r c h b e s t (d i f f C a r d l i m i t −\
l i m i t) ;
r e t u r n ;

end i f
f o r (i , j) i n k e a v a i l a b l e s e t

i f ! i s o k k e (i , j) t h e n
c o n t i n u e

end i f
TMP <− TMP+shun (i , j) ;
d i f f <− g e t d i f f () ;
s e a r c h d f s k e (dep −1 , l i m i t − d i f f , \
i , j) ;
r e c o v e r (TMP)

end f o r
s e a r c h d f s s h u n (dep , l i m i t , 0 , 2) ;

}

4 Optimization
In our ideas, we focus on getting victory in least turns with-
out considering of other players as their states are invisible.
That’s a way we thought to selectively abandon some opti-
mizations which contribute relatively less to our decisions so
that we are capable to allocate more resources on major work.
We consider it an aggressive type of decision-making, while
the final bot behaves amazingly well.

4.1 Pruning
As one of the commonest optimizations used in searching al-
gorithms, pruning does work efficiently. First, as the dynamic
calculation of LWT (S, T), using LHT (S) to prune while
searching is available. Then, we limit LHT (S, T) to 6 while
searching. This restrict proves to be reasonable. The upper
bound of LHT (S) which is actually 7 is easy to know be-
cause of the existence of Fan ”seven pairs”. Using simple
statistics, we know that the possibility of a pattern’s absence
of pairs is less than 1%. Then we can design a DP algorithm
to work out the possibility of a pattern whose LHT (S) is
more than 6 (equal to 7) as less than 0.5%. For this part of
0.5%, we decide to discard wind tiles or cardinal tiles first for
the efficiency of winning in case the program hasn’t found a
winning hand yet. In the actual running, we find that program
can produce all the winning hands in no more than 2 seconds
and in less than 1 second if LHT (S) < 6, that’s what proves
that we manage to step to our goal.

4.2 Expanding the Executing Period of Searching
The remaining problem is to resolve the time exceeding when
LHT (S) = 6. In view of the short distance from our pur-
pose, expectation analysis which may do harm to the accu-
racy seems unnecessary. So, it occurs to us that not only when
needed to response the information we can do some searching

but also when there is little need for response (such as when
other players implement a claiming operation). In this way
we make as full use as possible of all resources.

Here are the concrete measures. We upload the current
LHT (S) and P (S) to the platform so that we can download
them the next executing time. If we haven’t completed the
current searching yet when time is exceeding, we will upload
the incomplete searching path as well and use the combina-
tion of last uploaded and current LHT (S) and P (S) to cal-
culate E(S). Considering that the last and the current results
differ slightly, we are confident that this method works.

Another restriction is that the space limit of uploading is
100K, so the saved number of elements in P(S) is considered.
We set it as 4,000, which is actually greater than the number
of elements in P (S) when HT (S) ≤ 5, so a quite few of
winning plans will be abandoned when LHT (S) = 6, which
influences quite slightly, and this usually happens only in the
beginning 5 turns of the game.

All the same, there is a tiny probability of missing winning
plans. We define an easy handler to avoid crashing. We cal-
culate a simple weight of each tile. If the tile exists two times
in the pattern, its weight will be added by wp. And if two
tiles form have a chance to form a sequence, their weights
will be added by ws. Initially all tiles’ weights are 0. After
calculating, we choose the tile of minimum weight to discard,
and wind tiles and cardinal tile in priority if we have multiple
choices.

4.3 Adjusting Parameters
With the optimizations above, our program manages to
achieving our goal. To keep the robustness of the program,
we should adjust the related parameters through observing
the bot’s behavior in the real contests. After some jobs, the
final parameters are listed in the following:

Parameters Values
pp2 20/2552

pp3 50/2553

pc2 6/2552

pc3 18/2553

p7 0.7/255
wp 3
ws 1

References
[1] Zhang J , Zhao J , Bai S , et al. Applying speech inter-

face to Mahjong game[C]// Multimedia Modelling Con-
ference, 2004. Proceedings. 10th International. IEEE,
2004.

	Introduction
	Glossary List
	Basic Work
	Evaluation Function
	LHT and Winning Plans

	Optimization
	Pruning
	Expanding the Executing Period of Searching
	Adjusting Parameters

